Hybrid, Classical, and Presuppositional Inquisitive Semantics

Ivano Ciardelli and Jeroen Groenendijk Based on joint work with Floris Roelofsen

Paris, January 31, 2012

Overview

Part One

- 1. Inquisitive meaning
- 2. Hybrid basic inquisitive semantics InqB
- 3. Classical erotetic languages
- 4. Classical inquisitive semantics InqA
- Comparison of InqA and InqB

Part Two

- Presuppositional inquisitive semantics InqP
- The logic of InqP
- A derivation system for InqP
- Completeness proof
- Conclusions

Informativeness and inquisitiveness

Two components of meaning

- Informative content the information provided by a sentence
- Inquisitive content the issue raised by a sentence

Informative content

• The informative content of a sentence φ is modeled, as usual, as a set of worlds $|\varphi|$.

Definition (Informativeness)

Let $\varphi \in \mathcal{L}$, and ω the set of suitable worlds for \mathcal{L}

• φ is informative iff $|\varphi| \neq \omega$

Inquisitive content (definitions)

Definition (Issues)

Let s be a set of worlds.

- An issue over s is a downward closed set I of subsets of s.
 I.e., if t ∈ I and u ⊆ t, then u ∈ I.
- An issue *I* over *s* is unbiased iff *I* is a cover of *s*, i.e.,
 s = \(\) *I*. Otherwise, *I* is called biased.

Definition (Inquisitive content)

• The inquisitive content of φ , $[\varphi]$ is an issue over $|\varphi|$.

Definition (Inquisitiveness)

• φ is inquisitive iff $|\varphi| \notin [\varphi]$ i.e., $[\varphi] \neq \wp(|\varphi|)$

Inquisitive content (motivation)

- An utterance of a sentence φ is a proposal to accept the information $|\varphi|$ it provides and to settle the issue $[\varphi]$ it raises.
- If a set of worlds $s \in [\varphi]$, then s embodies information that settles the issue raised by φ .
 - If $t \subset s$, then t cannot fail to settle the issue as well. (Hence, downward closedness.)
- If $|\varphi| \in [\varphi]$, then nothing beyond accepting the information φ provides is needed to settle the issue it raises.
- So, φ is inquisitive iff more is needed to settle the issue it raises than accepting the information it provides.

Inquisitive meanings

- The inquisitive meaning of a formula φ is the pair $(|\varphi|, [\varphi])$.
- If the inquisitive content $[\varphi]$ of φ is an unbiased issue, then it fully determines its informative content: $|\varphi| = \bigcup [\varphi]$.
- The meaning of φ can then be identified with its inquisitive content $[\varphi]$.
- We call such inquisitive meanings non-presuppositional.
- A semantics is called non-presuppositional in case it assigns to each formula a non-presuppositional meaning.

Inquisitive support

Definition (Informativeness and inquisitiveness in a state)

- An information state s is a set of worlds.
- φ is informative in s iff $s \cap |\varphi| \neq s$
- φ is inquisitive in s iff $s \cap |\varphi| \notin [\varphi]$

Definition (support)

• s supports φ iff φ is neither informative nor inquisitive in s.

Inquisitive support and meaning

Fact (Support and meaning)

• s supports φ iff $s \in [\varphi]$

Inquisitive support semantics

- If our semantics is non-presuppositional, then $[\varphi]$ completely determines the meaning of φ ;
- So, a support definition for a given language uniquely defines a non-presuppositional semantics.
- The meaning $[\varphi]$ of φ in such a system will be defined as the set of all supporting states.

Hybrid basic inquisitive semantics

Language is a standard propositional language

Definition (Semantics of InqB)

- 1. $s \models p \iff \forall w \in s : w(p) = 1$
- 2. $s \models \bot \iff s = \emptyset$
- 3. $s \models \varphi \rightarrow \psi \iff \forall t \subseteq s$: if $t \models \varphi$ then $t \models \psi$
- 4. $s \models \varphi \land \psi \iff s \models \varphi$ and $s \models \psi$
- 5. $s \models \varphi \lor \psi \iff s \models \varphi \text{ or } s \models \psi$

Definition (abbreviations)

- 1. $\neg \varphi := \varphi \rightarrow \bot$
- 2. $!\varphi := \neg \neg \varphi$ (non-inquisitive closure)
- 3. $?\varphi := \varphi \lor \neg \varphi$ (non-informative closure)

Inquisitive meanings and informative content in InqB

Definition (Meanings in InqB)

- The meaning of φ in InqB is $[\varphi] = \{s \subseteq \omega \mid s \models \varphi\}$;
- This determines the informative content $|\varphi| = \bigcup [\varphi]$.

Fact

- Persistence: if $s \models \varphi$, then for every $t \subseteq s$: $t \models \varphi$.
- Classical behavior of singletons: $\{v\} \models \varphi$ iff $v \models_{cl} \varphi$.

Information is treated classically

• These facts guarantee that $|\varphi|$ coincides with the set of worlds where φ is true.

Three semantic categories

Definition (Assertions, questions, and hybrids)

- φ is an assertion iff φ is not inquisitive
- φ is a question iff φ is not informative
- φ is a hybrid iff φ is informative and inquisitive

Tautologies

- φ is a question in InqB iff φ is a classical tautology.
- φ is a tautology in InqB iff φ is neither informative nor inquisitive.
- Inquisitive semantics enriches the notion of meaning (in a conservative way).
- Though being not informative, a sentence can still be meaningful in InqB by being inquisitive.

Disjunction is inquisitive

Fact (Hybrid disjunction)

- p ∨ q is a hybrid sentence
- $p \lor q$ is informative: $|p \lor q| \neq \omega$
- $p \lor q$ is inquisitive: $|p \lor q| \notin [p \lor q]$

Fact (Inquisitive question)

- $?p = p \lor \neg p$ is an inquisitive question
- $p \lor \neg p$ is not informative: $|p \lor \neg p| = \omega$
- $p \lor q$ is inquisitive: $|p \lor \neg p| \notin [p \lor \neg p]$

Closure operators

Fact (Negation, assertions, questions)

- ¬φ is an assertion
- $!\varphi$ is an assertion
- $?\varphi$ is a question

Fact (Non-informative and non-inquisitive closure)

- φ is an assertion iff $\varphi \equiv !\varphi$
- φ is a question iff $\varphi \equiv ?\varphi$

Fact (Division)

• $\varphi \equiv !\varphi \wedge ?\varphi$

Conditional questions in InqB

Conditional assertion, question, and hybrid

- $s \models p \rightarrow q \iff s \subseteq |p \rightarrow q| \iff s \cap |p| \subseteq |q|$
- $s \models p \rightarrow ?q \iff s \models p \rightarrow q \text{ or } s \models p \rightarrow \neg q$
- $s \models p \rightarrow (q \lor r) \Longleftrightarrow s \models p \rightarrow q \text{ or } s \models p \rightarrow r$

Conditional question with inquisitive antecedent

•
$$s \models (p \lor q) \to ?r \Longleftrightarrow s \models (p \lor q) \to r$$
, or $s \models (p \lor q) \to \neg r$, or $s \models (p \to r) \land (q \to \neg r)$, or $s \models (p \to \neg r) \land (q \to r)$

Alternative and choice questions in InqB

Alternative question

• $s \models ?(p \lor q) \Longleftrightarrow s \models p \text{ or } s \models q \text{ or } s \models \neg p \land \neg q$

Choice question

• $s \models ?p \lor ?q \Longleftrightarrow s \models p \text{ or } s \models \neg p \text{ or } s \models q \text{ or } s \models \neg q$

Qualms

- Is InqB's representation of alternative questions fully adequate?
- Do choice questions surface in natural language as disjunctions of interrogative sentences?
- Is disjunction in natural language really semantically inquisitive?

The status of IngB

- InqB is a basic logical system to model inquisitiveness, on a par with informativeness, which is dealt with classically.
- There is no claim that a direct and perfect surface correspondence exists between specific sentences of the logical language and specific sentences of a specific natural language.
- The inherent claim is that there is a fundamental correspondence between the interpretation of the semantic operations in the logical language and constructions in natural language that involve informative and inquisitive content.
- Inquisitive semantics is to serve as a logical analytical tool in the study of meaning in natural language.

Classical erotetic languages

- In InqB the syntax of the logical language is standard, the meanings are enriched with inquisitive content.
- Unlike in most natural languages, and in most erotetic logics, in InqB no syntactic distinction is made between interrogatives and indicatives.

Indicatives and interrogatives

- We will consider a system InqA in which we do distinguish two syntactic categories of indicatives L_! and of interrogatives L_?.
- For every sentence $\varphi \in \mathcal{L}$: $\varphi \in \mathcal{L}_! \cup \mathcal{L}_?$, and for no sentence $\varphi \in \mathcal{L}$: $\varphi \in \mathcal{L}_! \cap \mathcal{L}_?$.
- In InqA all indicatives are assertions, all interrogatives are questions, and no no hybrid single sentences occur in £.

Sufficient conditions for assertion- and questionhood in InqB

- 1. *p* is an informative assertion, for all atomic sentences *p*
- 2. ⊥ is an informative assertion
- 3. If φ and ψ are assertions, then $\varphi \wedge \psi$ is an assertion If φ and ψ are questions, then $\varphi \wedge \psi$ is a question
- 4. If ψ is an assertion, then $\varphi \to \psi$ is an assertion If ψ is a question, then $\varphi \to \psi$ is a question
- 5. If either φ or ψ is a question, then $\varphi \lor \psi$ is a question

Fact (Disjunction is the only source of inquisitiveness in InqB) In the disjunction-free fragment of InqB all sentences are assertions.

Notational convention

- α, β, γ denote indicatives, and Γ, Δ sets of indicatives;
- μ, ν, λ denote interrogatives, and Λ a set of interrogatives;
- φ, ψ, χ denote generic formulas, and Φ a set of generic formulas.

Classical erotetic language

Definition (Bi-categorial syntax of InqA)

- 1. $\alpha \in \mathcal{L}_{!}$, for all atomic sentences α
- 2. $\perp \in \mathcal{L}_!$
- 3. If Γ is a finite subset of $\mathcal{L}_{!}$, then $?\Gamma \in \mathcal{L}_{?}$
- 4. If $\alpha \in \mathcal{L}_!$ and $\varphi \in \mathcal{L}_{c \in \{!,?\}}$, then $(\alpha \to \varphi) \in \mathcal{L}_c$
- 5. If $\varphi, \psi \in \mathcal{L}_{c \in \{1,?\}}$, then $(\varphi \wedge \psi) \in \mathcal{L}_{c}$
- 6. If Φ is a finite subset of $\mathcal{L}_! \cup \mathcal{L}_?$, then $\Phi \in \mathcal{L}$

Hybrids can only be constructed in \mathcal{L} as sets of non-hybrid single sentences. (Clause 6.)

Definition (Classical abbreviations)

- 1. $\neg \alpha := (\alpha \to \bot)$
- 2. $(\alpha \vee \beta) := \neg(\neg \alpha \wedge \neg \beta)$

Classical inquisitive semantics

Definition (Semantics of InqA)

- 1. $s \models p \iff \forall w \in s : w(p) = 1$
- 2. $s \models \bot \iff s = \emptyset$
- 3. $s \models ?\Gamma \iff \exists \alpha \in \Gamma : s \models \alpha$, or

$$\forall \alpha \in \Gamma \colon \forall t \subseteq s \colon \text{if } t \models \alpha, \text{ then } t = \emptyset$$

- 4. $s \models \alpha \rightarrow \varphi \iff \forall t \subseteq s : \text{if } t \models \alpha \text{ then } t \models \varphi$
- 5. $s \models \varphi \land \psi \iff s \models \varphi \text{ and } s \models \psi$
- **6**. $s \models \Phi \iff \forall \varphi \in \Phi \colon s \models \varphi$

Basic questions

• $s \models ?\Gamma \iff \exists \alpha \in \Gamma : s \models \alpha$, or $\forall \alpha \in \Gamma : s \models \neg \alpha$

Inquisitive meanings and informative content in InqA

Definition (Meanings in InqA)

- The meaning of φ in InqA is $[\varphi] = \{s \subseteq \omega \mid s \models \varphi\}$;
- This determines the informative content $|\varphi| = \bigcup [\varphi]$.

Information is treated classically

- The informative content $|\alpha|$ of an indicative coincides with the set of worlds where α is true.
- The informative content $|\mu|$ of an interrogative is always trivial, that is, $|\mu| = \omega$.

Classical inquisitive semantics, simplified

Definition (Semantics of InqA)

- 1. $s \models p \iff s \subseteq |p|$
- 2. $s \models \bot \iff s = \emptyset$
- 3. $s \models ?\Gamma \iff \exists \alpha \in \Gamma : s \subseteq |\alpha|$, or $\forall \alpha \in \Gamma : s \cap |\alpha| = \emptyset$
- 4. $s \models \alpha \rightarrow \varphi \iff s \cap |\alpha| \models \varphi$
- 5. $s \models \varphi \land \psi \iff s \models \varphi \text{ and } s \models \psi$
- **6**. $s \models \Phi \iff \forall \varphi \in \Phi \colon s \models \varphi$

The semantics of basic questions in InqA

Examples

- $s \models ?\{p\} \iff s \models p \text{ or } s \models \neg p$ $?\{p\} \equiv ?\{p, \neg p\} \equiv ?\{\neg p\}$
- $s \models ?\{p, q\} \iff s \models p \text{ or } s \models q, \text{ or } (s \models \neg p \text{ and } s \models \neg q)$ $?\{p, q\} \equiv ?\{p, q, \neg p \land \neg q\}$

Comment

- Since the interrogative ?{p, q} is to be a question, is has to be non-informative. The disjunct marked in red takes care of that.
- If we read $\{p, q\}$ as an alternative question, it may be observed that the answers p and q do not have the same status as the answer $\neg p \land \neg q$.
- Already for the polar questions ?{p} and ?{¬p} it might be argued that they are not necessarily fully equivalent.

Comparison of InqA and InqB

Meaning preserving translations

- There is a straightforward translation procedure that transforms any finite set of sentences in InqA into a single equivalent conjunction of sentences in InqB
- Conversely, using the division fact $\varphi \equiv ! \varphi \wedge ? \varphi$, any single sentence φ of InqB can be turned into an equivalent set $\{\alpha_{\varphi}, \mu_{\varphi}\}$ of two sentences of InqA, where:
 - α_{φ} is an indicative equivalent to $!\varphi$
 - μ_{φ} is an interrogative equivalent to $?\varphi$

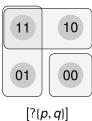
Examples

- The hybrid disjunction p ∨ q in InqB is equivalent with the set of two sentences {p ∨ q, ?{p, q}} in InqA.
- The conditional question $(p \lor q) \to ?r$ in InqB is equivalent with the basic question $?\{(p \lor q) \to r, (p \lor q) \to \neg r, (p \to r) \land (q \to \neg r), (p \to \neg r) \land (q \to r)\}$ in InqA.

Conclusions first part

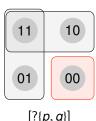
- Inquisitive semantics is a general erotetic semantic framework
- It is not inherently linked to a mono-categorial language or inquisitive disjunction
- It can just as well be used in combination with bi-categorial languages
- The inquisitive semantic framework can be used as a tool to compare different erotetic systems

Consider an alternative question like $\{p, q\}$.



Consider an alternative question like $\{p, q\}$.

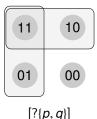
 Unlike p and q, the response $\neg(p \lor q)$ does not seem to be invited by $\{p, q\}$



 $[?{p,q}]$

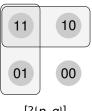
Consider an alternative question like $\{p, q\}$.

- Unlike p and q, the response $\neg(p \lor q)$ does not seem to be invited by $\{p, q\}$
- The picture we would really like to have is this one.

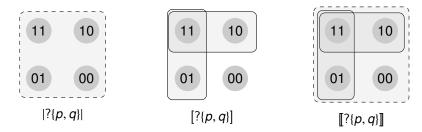


Consider an alternative question like $\{p, q\}$.

- Unlike p and q, the response
 ¬(p ∨ q) does not seem to be
 invited by ?{p, q}
- The picture we would really like to have is this one.
- But then, since |φ| = ∪[φ], ?{p, q} would turn out informative.



- We need to disassociate the informative content $|\varphi|$ of a formula from its inquisitive content $[\varphi]$.
- Meaning $[\![\varphi]\!]$ will consist of the pair $(|\varphi|, [\varphi])$.



- 1. We leave untouched the notion of informative content.
 - Stipulating that an interrogative is true in any world, the informative content $|\varphi|$ can be seen as the truth-set of φ .
- 2. We simplify the support definition so that $?\Gamma$ is only satisfied by establishing one of the indicatives $\alpha \in \Gamma$.

```
• s \models p \iff s \subseteq |p|

• s \models \bot \iff s = \emptyset

• s \models ?\Gamma \iff \exists \alpha \in \Gamma : s \subseteq |\alpha|, \text{ or } \forall \alpha \in \Gamma : s \cap |\alpha| = \emptyset

• s \models \alpha \to \varphi \iff s \cap |\alpha| \models \varphi
```

•
$$s \models \varphi \land \psi \iff s \models \varphi \text{ and } s \models \psi$$

•
$$s \models \Phi \iff \forall \varphi \in \Phi : s \models \varphi$$

- 1. We leave untouched the notion of informative content.
 - Stipulating that an interrogative is true in any world, the informative content $|\varphi|$ can be seen as the truth-set of φ .
- 2. We simplify the support definition so that $?\Gamma$ is only satisfied by establishing one of the indicatives $\alpha \in \Gamma$.

```
• s \models p \iff s \subseteq |p|

• s \models \bot \iff s = \emptyset

• s \models ?\Gamma \iff \exists \alpha \in \Gamma : s \subseteq |\alpha|

• s \models \alpha \to \varphi \iff s \cap |\alpha| \models \varphi

• s \models \varphi \land \psi \iff s \models \varphi \text{ and } s \models \psi

• s \models \Phi \iff \forall \varphi \in \Phi : s \models \varphi
```

- 1. We leave untouched the notion of informative content.
 - Stipulating that an interrogative is true in any world, the informative content $|\varphi|$ can be seen as the truth-set of φ .
- 2. We simplify the support definition so that $?\Gamma$ is only satisfied by establishing one of the indicatives $\alpha \in \Gamma$.

```
• s \models p \iff s \subseteq |p|

• s \models \bot \iff s = \emptyset

• s \models ?\Gamma \iff \exists \alpha \in \Gamma : s \subseteq |\alpha|

• s \models \alpha \to \varphi \iff s \cap |\alpha| \models \varphi

• s \models \varphi \land \psi \iff s \models \varphi \text{ and } s \models \psi

• s \models \Phi \iff \forall \varphi \in \Phi : s \models \varphi
```

We denote by $[\varphi]$ the set of states supporting φ .

Meanings

$$\llbracket \varphi \rrbracket = \bigl(|\varphi|, [\varphi] \bigr)$$

Definitions

- $|\varphi|$ is the informative content of φ
- $[\varphi]$ is the inquisitive content of φ
- $\pi(\varphi) = \bigcup [\varphi]$ is the presupposition of φ

The system InqP

Definitions

- φ is informative if $|\varphi| \neq \omega$.
- φ is inquisitive if $|\varphi| \notin [\varphi]$.
- φ is a question if it is not informative.
- φ is an assertion if it is not inquisitive.

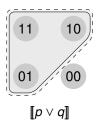
Fact

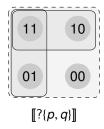
Indicatives are assertions, interrogatives are questions.

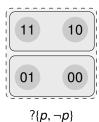
The system InqP

Definition

 φ is presuppositional in case $|\varphi| \neq \pi(\varphi)$







The logic of InqP

Entailment

- $\Phi \models_{\mathsf{info}} \psi \iff \mathsf{whenever} \ w \models \varphi \ \mathsf{for} \ \mathsf{all} \ \varphi \in \Phi, \ w \models \psi.$
- $\Phi \models_{\text{ing}} \psi \iff \text{whenever } s \models \varphi \text{ for all } \varphi \in \Phi, s \models \psi.$
- $\Phi \models \psi \iff \Phi \models_{\mathsf{info}} \psi$ and $\Phi \models_{\mathsf{ing}} \psi$.

Deduction theorem

$$\Phi, \alpha \models \psi \iff \Phi \models \alpha \rightarrow \psi.$$

Compactness

If $\Phi \models \psi$ there is a finite $\Phi_0 \subseteq \Phi$ s.t. $\Phi_0 \models \psi$.

Split

If $\Gamma \models ?\Delta$, then $\Gamma \models \alpha$ for some $\alpha \in \Delta$.

The logic of InqP

What does entailment mean?

- $\Gamma \models \alpha$: amounts to classical entailment.
- $\Gamma \models \mu$: Γ provides enough information to settle μ .

$$p \land q \models ?\{p, q\}$$

• $\Lambda \models \mu : \mu$ can be reduced to Λ .

$$?\{p, \neg p\} \models q \rightarrow ?\{p, \neg p\}$$

- $\Gamma, \Lambda \models \alpha \iff \Gamma \models \alpha$.
- $\Gamma, \Lambda \models \mu$: Γ provides enough information to reduce μ to Λ .

$$\neg r$$
, $?\{p, q, r\} \models ?\{p, q\}$

Start from a natural deduction system for classical logic.

Implication

Conjunction

$$\frac{\alpha \quad \beta}{\alpha \land \beta}$$

$$\frac{\alpha \quad \beta}{\alpha \land \beta} \qquad \qquad \frac{\alpha \land \beta}{\alpha} \quad \frac{\alpha \land \beta}{\beta}$$

Disjunction

$$\begin{array}{cccc} & [\alpha] & [\beta] \\ \vdots & \vdots & \vdots \\ \frac{\alpha}{\alpha \vee \beta} & \frac{\beta}{\alpha \vee \beta} & \frac{\dot{\gamma}}{\gamma} & \frac{\dot{\gamma}}{\gamma} & \alpha \vee \beta \end{array}$$

Falsum

Negation

$$\begin{bmatrix} \alpha \\ \vdots \\ \frac{\bot}{\neg \alpha} \end{bmatrix} \qquad \frac{\alpha \quad \neg}{\bot}$$

Double negation

$$\frac{\neg \neg a}{\alpha}$$

Extend the rules for conjunction and implication to deal with conjunctive and conditional interrogatives.

Conjunction

$$\frac{\alpha \quad \beta}{\alpha \land \beta}$$

$$\frac{\alpha \quad \beta}{\alpha \wedge \beta} \qquad \qquad \frac{\alpha \wedge \beta}{\alpha} \quad \frac{\alpha \wedge \beta}{\beta}$$

Disjunction

$$\frac{\alpha}{\alpha\vee\beta} \ \frac{\beta}{\alpha\vee\beta} \quad \frac{\vdots}{\gamma} \quad \frac{\vdots}{\gamma} \quad \alpha\vee\beta \\ \hline \gamma$$

Falsum

$$\frac{\perp}{\alpha}$$

Implication

$$\begin{array}{c} [\alpha] \\ \vdots \\ \frac{\beta}{\alpha \to \beta} \end{array} \quad \frac{\alpha \quad \alpha \to \beta}{\beta}$$

Negation

$$\begin{bmatrix} \alpha \\ \vdots \\ \frac{\perp}{\neg \alpha} \end{bmatrix} \qquad \frac{\alpha \quad \neg \alpha}{\bot}$$

$$\frac{\neg \neg \alpha}{\alpha}$$

Extend the rules for conjunction and implication to deal with conjunctive and conditional interrogatives.

Conjunction

$$\frac{\varphi \wedge \psi}{\varphi} \quad \frac{\varphi \wedge \psi}{\psi}$$

Disjunction

$$\frac{\alpha}{\alpha \vee \beta} \quad \frac{\beta}{\alpha \vee \beta} \quad \frac{\vdots}{\gamma} \quad \frac{\vdots}{\gamma} \quad \frac{\vdots}{\gamma} \quad \alpha \vee \beta}{\gamma}$$

Falsum

Implication

Negation

Double negation

$$\frac{\neg \neg \varphi}{\varphi}$$

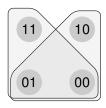
Give rules for the interrogative operator

Remark

Logically, ? is almost a disjunction.

$$\alpha \to ?\{\beta_1, \dots, \beta_m\} \equiv ?\{\alpha \to \beta_1, \dots, \alpha \to \beta_m\}$$

 This is not provable using only the rules for? and implication.

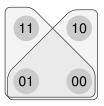


$$\llbracket p \to ?\{q, \neg q\} \rrbracket = \llbracket ?\{p \to q, p \to \neg q\} \rrbracket$$

$$\alpha \to ?\{\beta_1, \ldots, \beta_m\} \equiv ?\{\alpha \to \beta_1, \ldots, \alpha \to \beta_m\}$$

- This is not provable using only the rules for? and implication.
- We add the KP rule

$$\frac{\alpha \to ?\{\beta_1, \dots, \beta_m\}}{?\{\alpha \to \beta_1, \dots, \alpha \to \beta_m\}}$$



$$\llbracket p \to ?\{q, \neg q\} \rrbracket = \llbracket ?\{p \to q, p \to \neg q\} \rrbracket$$

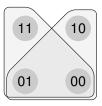
$$\alpha \to ?\{\beta_1, \ldots, \beta_m\} \equiv ?\{\alpha \to \beta_1, \ldots, \alpha \to \beta_m\}$$

- This is not provable using only the rules for? and implication.
- We add the KP rule

$$\frac{\alpha \to ?\{\beta_1, \dots, \beta_m\}}{?\{\alpha \to \beta_1, \dots, \alpha \to \beta_m\}}$$

 Analogous to the Kreisel-Putnam rule of InqB:

$$\frac{\neg \varphi \to (\psi \lor \chi)}{(\neg \varphi \to \psi) \lor (\neg \varphi \to \chi)}$$



$$\llbracket p \to ?\{q, \neg q\} \rrbracket = \llbracket ?\{p \to q, p \to \neg q\} \rrbracket$$

Lemma

Any interrogative μ is provably equivalent to a basic one.

Proof

By induction on μ .

- 1. μ basic: trivial.
- 2. $\mu = \nu \wedge \lambda$. If $\nu \equiv_P ?\{\alpha_1, \dots, \alpha_n\}$ and $\lambda \equiv_P ?\{\beta_1, \dots, \beta_m\}$, then:

$$\mu \equiv_P ? \{ \alpha_i \land \beta_i | 1 \le i \le n, 1 \le j \le m \}$$

3. $\mu = \alpha \rightarrow \nu$. If $\nu \equiv_P ?\{\beta_1, \dots, \beta_m\}$, then using the KP rule:

$$\mu \equiv_P ?\{\alpha \rightarrow \beta_1, \ldots, \alpha \rightarrow \beta_m\}$$

- Suppose $\Phi \models \psi$.
- By compactness, we may assume Φ is finite. Write $\Phi = \Gamma \cup \Lambda$.
- We can immediately get rid of the case in which ψ is an assertion α .
- For, in this case $\Gamma, \Lambda \models \alpha$ is equivalent to $\Gamma \models \alpha$.
- Then $\Gamma \vdash \alpha$ by the completeness theorem for classical logic
- So we may assume that ψ is an interrogative μ .
- Let $\gamma = \bigwedge \Gamma$ and $\lambda = \bigwedge \Lambda$.
- Then $\Phi \models \mu$ is equivalent to $\gamma, \lambda \models \mu$.
- By the deduction theorem $\lambda \models \gamma \rightarrow \mu$.

- By the previous lemma,
 - $\lambda \equiv_P ?\{\alpha_1, \ldots, \alpha_n\}$
 - $\gamma \rightarrow \mu \equiv_P ?\{\beta_1, \ldots, \beta_m\}$
- So, $?{\alpha_1, ..., \alpha_n} \models ?{\beta_1, ..., \beta_m}.$
- For any $i, \alpha_i \models ?\{\alpha_1, \ldots, \alpha_n\}$, so $\alpha_i \models ?\{\beta_1, \ldots, \beta_m\}$.
- By the split fact remarked above, there must be j such that $\alpha_i \models \beta_j$.
- But since α_i and β_j are indicatives, completeness for indicatives yields α_i ⊢ β_j.

- By the rule of ?-introduction then, $\alpha_i \vdash ?\{\beta_1, \dots, \beta_m\}.$
- Since $\alpha_i \vdash ?\{\beta_1, \ldots, \beta_m\}$ for all $1 \le i \le n$, the ?-elimination rule may be applied, yielding $?\{\alpha_1, \ldots, \alpha_n\} \vdash ?\{\beta_1, \ldots, \beta_m\}$.
- Recalling that $\lambda \equiv_P ?\{\alpha_1, \dots, \alpha_n\}$ and $\gamma \to \mu \equiv_P ?\{\beta_1, \dots, \beta_m\}$, we get $\lambda \vdash \gamma \to \mu$.
- Therefore, γ , $\lambda \vdash \mu$.
- But since γ and λ are conjunctions of formulas in Φ we have Φ ⊢ γ and Φ ⊢ λ.
- Hence, $\Phi \vdash \mu$.

Conclusions: two types of meanings

- The goal of inquisitive semantics is to extend the notion of meaning to encompass inquisitive potential.
- A sentence φ provides information by specifying a set $|\varphi|$ of possible worlds.
- A sentence requests information by specifying an issue $[\varphi]$ over $|\varphi|$.
- The meaning of φ consists of the pair $[\![\varphi]\!] = (|\varphi|, [\varphi])$, embodying informative and inquisitive content of φ .

Conclusions: two types of meanings

Non-presuppositional systems

- In the systems InqB and InqA, meanings are assumed to be non-presuppositional: that is, $[\varphi]$ is assumed to be an unbiased issue over $|\varphi|$.
- Since this amounts to $|\varphi| = \bigcup [\varphi]$, the meaning $(|\varphi|, [\varphi])$ of φ in these systems is completely determined by the inquisitive component $[\varphi]$.

Conclusions: two types of meanings

Presuppositional systems

- The restriction to non-presuppositional meanings can be lifted to yield a richer semantic space.
- Presuppositional meanings can be useful to get a more accurate representation of certain NL meanings.
- In a presuppositional system, the issue $[\varphi]$ over $|\varphi|$ may be biased.
- Both components $|\varphi|$ and $[\varphi]$ are necessary to determine the meaning $[\![\varphi]\!] = (|\varphi|, [\varphi]\!]$ of φ .

Conclusions: two types of languages

Once we choose what notion of meaning we want, we also have a choice about what language to use to express such meanings.

- Hybrid, or deep-structure languages:
 - · allow for hybrid sentences;
 - connectives express the natural operations on the space of meanings.
- Classical or surface languages:
 - partition sentences into indicatives and interrogatives;
 - connectives are closer to their natural language counterpart.

Conclusions

We may distinguish four systems according to their notion of meaning and to their language.

Lang \ Mean	Non-presuppositional	Presuppositional
Hybrid	InqB	InqQ
Classical	InqA	InqP

Conclusions

We may distinguish four systems according to their notion of meaning and to their language.

Lang \ Mean	Non-presuppositional	Presuppositional
Hybrid	InqB	InqQ
Classical	InqA	InqP

www.illc.uva.nl/inquisitive-semantics Thanks!

