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Foreword 2 / 40

The Argument in a Nutshell

● Taking Hintikka [HHM99] seriously:
Interrogative logic as a general theory of reasoning.
. . . but logic (esp. classical) is a poor basis for a cognitive theory of reasoning:

✦ ‘Mainstream’ cognitive science:
Early attempts at logic-based models (e.g. Piaget) are discredited since [Was66]; responses by ‘mental logic’
and ‘mental models’ theories were inconclusive; Bayesian models have become dominant since [OC94].

✦ ‘State-of-the-art’ cognitive theories of semantic abilities:
logical reasoning (classical or otherwise) supervenes on language interpretation [SvL08], itself exapted from
planning (esp. strategies in cooperative games) [BG03, SvL08].

IMI Workshop, IHPST, Paris 3 / 40

The Argument in a Nutshell

● Taking Hintikka [HHM99] seriously (updated):
Semantic-interrogative games as a general theory of reasoning

IMI Workshop, IHPST, Paris 4 / 40
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Introduction:
“The Mother of All Reasoning Tasks” 5 / 40

The Selection Task (I)
“The Mother of All Reasoning Tasks”

The standard instructions for Selection Task (ST) of [Was66, Was68] (in its abstract version) are:

Below is depicted a set of four cards, of which you can see only the exposed face but not the hidden back.
On each card, there is a number on one of its sides and a letter on the other. Also below there is a rule
which applies only to the four cards. Your task is to decide which if any of these four cards you must turn in
order to decide if the rule is true. Don’t turn unnecessary cards. Tick the cards you want to turn.

Rule If there is a vowel on one side, then there is an even number on the other side.
Cards A K 4 7

(From [SvL08, p. 44])

IMI Workshop, IHPST, Paris 6 / 40

The Selection Task (II)
Assumptions vs. Results

● Neglecting quantification over letters and numbers, Rule simplifies in: If P , then Q; and Wason assumes
that the normative selection is:

(A, ·), (7, ·) (Nor)

● But typical results are:
(A, ·) (A, ·), (4, ·) (A, ·), (7, ·) (A, ·), (4, ·), (7, ·) misc.
35% 45% 5% 7% 8%

● (Nor)-like selection is higher in ‘thematic’ variants—where the rule is given a less abstract content.

IMI Workshop, IHPST, Paris 7 / 40
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The Selection Task (III): Explanations

● Typically explanations assume that (Nor) is ‘the’ context-independent logically competent answer; but:

Abstract context-sensitive mechanisms override logical competence; and:
Thematic either: (a) familiarity helps to recover the ‘logical’ answer; or: (b) context-sensitive

mechanisms output the same selection for other reasons.

● E.g. Oaksford & Chater’s (Bayesian) ‘rational analysis’ in [OC94]:

Abstract Subjects treat cards as sample, and test Rule as inductive hypothesis; the optimal data selection
matches the empirical results: (A, ·) > (4, ·) > (7, ·) > (K, ·);

Thematic Conditional are in fact deontic : subjects’ selections reveal preferences w.r.t. the rule (esp.
exhausting the potential violators).

IMI Workshop, IHPST, Paris 8 / 40

The Semantic View (I): Motivations

Stenning and Van Lambalgen argue in [SvL01, SvL04, SvL08] that:

● developments in formal semantics undermine the assumption of a context-independent logical competence
coextensive with the material conditional interpretation;

● empirical evidence shows that within the same category of ST (abstract/thematic), subjects are not always
doing the same thing—see e.g. tutorial dialogs reported in [SvL01, SvL08];

● subjects must always: (a) recover the experimenter’s intended interpretation; then: (b) reason from it to a
solution (and its report);

● selections vary with the perceived goal and the corresponding optimal solution; and they can be
manipulated by eliciting—or hindering—specific interpretations.

IMI Workshop, IHPST, Paris 9 / 40
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The Semantic View (II): Pros and Cons

Pros The semantic view accounts systematically for co-variance of selections and semantic content, in a way
that:

● integrates the developments of formal semantics;
● embeds other accounts when relevant—e.g. when the ‘cards-as-sample’ interpretation is elicited.

Cons The semantic view provides no formal model for:

● reasoning to an interpretation before problem-solving within an interpretation;
● the heuristic value of semantic interpretation within problem-solving.

IMI Workshop, IHPST, Paris 10 / 40

General Aims

Our (general) aim is to:

● provide the semantic view with a unified account of reasoning to and from an interpretation.
● give formal models illuminating the heuristic value of semantics in problem-solving;
● build the model ‘bottom-up,’ in agreement with the hypothesis that:

“Language exapted the planning capacity, both for syntax and for semantics, and in particular
discourse interpretation” [SvL08, p. 178]

. . . and that reasoning about entailment relations supervenes on ‘language interpretation’ [SvL08, GJ12b].

IMI Workshop, IHPST, Paris 11 / 40
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Plan

1. A formal model of interrogative learning.
2. Approximate as far as possible the ‘intended interpretation’ of ST, with an interrogative learning ST

problem.
3. Learning methods that solve/decide the ST problem, and an undecidability result.
4. Conclude on prospects for the model, and directions for further research.

IMI Workshop, IHPST, Paris 12 / 40

A Formal Model of Interrogative Learning 13 / 40

Definitions (I): Problems

Definition 1. A problem is a triple P = 〈K, H,Q〉 s.t. :

● K is set of states s.t. any κ ∈ K, is identified by values for a set of relevant parameters;

● H is a set histories—sequences of positions at which some value for some parameters are obtained,
gradually identifying an underlying state;

● Q is a partition of states in K.

Rem 1.1 h ∈ H iff there is some learning method (LM) addressing P that generates it—H is the view of an
omniscient modeler. Constrains on H apply to all LM for P .

Rem 1.2 P is finite iff H is finite; and with finite horizon iff every h ∈ H is of finite length.

Rem 1.3 If h is of length n, h′ extends h iff h′|n = h, where h′|n is the initial segment of length n of h′;
h(n) is the item occurring at the nth position of h; and h " e is the extension of h with e.

IMI Workshop, IHPST, Paris 14 / 40
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Definitions (II): Interrogative Learning Method

Definition 2. An interrogative learning method (LM) for some P = 〈K, H,Q〉 is a (partial) function
l : H $−→ (A ∪Q)×Q ∪ {?}, where:

● A is a set of (noninterrogative) actions;
● Q is a set of instrumental questions;
● ‘?’ indicates suspension between answers in Q;

l(H) is the subset of H generated implementing l in P .

Rem 2.1 For some L = {l1, . . . , ln}, l1(H) ∪ · · · ∪ ln(H) ⊆ H is the partial representation of P induced by
L.

Rem 2.2 If the source of answer is strategic, Def. 1 and Def. 2 can be modified to characterize games and
interrogative strategies.

Rem 2.3 A history h ∈ H is: (a) l-terminal iff l is undefined for extensions of h; and: (b) maximal iff it is
l-terminal for every l.

Rem 2.4 Q is general enough to capture selections of cards to turn in ST.

IMI Workshop, IHPST, Paris 15 / 40

Special Cases

Example 1. In the First-Order Paradigm of [MO98], for some first-order language L:

● K = Mod(Γ) for some Γ ⊆ L; parameters are literals, and the relevant values atomic valuations; and Q is any
non-trivial partition of Mod(Γ).

● for any l: (a) A = ∅; (b) Q includes all yes-or-no questions {φ,¬φ} where φ is atomic, and from the vocabulary of Γ;
(c) l can always generate a complete diagram for some κ ∈ K—i.e. Nature eventually answers all atomic
questions.

Example 2. Interrogative-deductive games from [HHM99, GJ12b]:

● K = Mod(Γ); parameters are subformulas of elements of Γ, and the relevant values, valuations satisfying Γ;

● For any l: (a) A contains ‘semantic actions’ based on semantic clauses for L, to analyze elements of Γ, and φ, in
subformulas; (b) Q contains yes-or-no questions, and questions with presuppositions obtained by actions in A; (c)
not all answers are available (even in the limit).

● If Nature never answers, the problem is purely epistemic (deductive), and can be modeled as a (generalized) GTS
game—see [GJ12b].

IMI Workshop, IHPST, Paris 16 / 40
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Definitions (III): Solution, Decision

Definition 3. For some problem P = 〈K, E,Q〉, and interrogative LM l, and l-terminal h ∈ H:

● l stabilizes on q in h at h(n) iff l(h|n) = 〈X, q〉 for some (possibly empty) X ⊆ A ∪Q, and: (a) h is of length
m ≥ n, and for any n′ s.t. n ≤ n′ ≤ m, l(h|n′) = 〈X ′, q〉, or: (b) h is infinite, and for any n′ > n, l(h|n′) = 〈X ′, q〉
(for some possibly empty X ′ ⊆ A ∪Q). l outputs the same answer to Q from h(n) until it stops generating h (if it
does).

● l solves P on h at h(n) iff (i) l stabilizes on q at h(n) and: (b) any κ ∈ K compatible with values of parameters
obtained in h is in q; l gets the answer to Q right in h from h(n) on.

● l decides P on h iff h is of finite length n, and l solves P on h at h(m) for some m ≤ n. l solves P at h(n) and
stops doing anything (immediately, or later).

● l solves (decides) P on K—or solves P simpliciter—iff: (a) l solves (decides) P on every l-terminal h ∈ H; and: (b)
every κ ∈ K is (partially) characterized in at least one l-terminal h ∈ l(H) l gets the answer to Q right in all states,
without approximation, even under uncertainty about the actual state.

IMI Workshop, IHPST, Paris 17 / 40

Solution, Decision (cont’d)

Rem 3.1 Halting on success is a special case of decision: l can stabilize and still output actions (e.g. ‘control’
questions), before it stops (and decides).

Rem 3.2 A LM for P can solve P without deciding it—“no bell rings”when P is solved (when l
stabilizes)—see [Kel04].

Rem 3.3 A consequence of Def. 1–3 is that any solvable problem with finite horizon is decidable:
‘nonredundancy’ constraints on LM (e.g. halting on success, etc.) are especially relevant for such
problems.

IMI Workshop, IHPST, Paris 18 / 40
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Reasoning ‘to’ an interpretation

Reasoning to an interpretation of a set of instructions can be modeled as follows:

● A generalized problem associated with a set I of instructions, is a family P=P1, . . . , Pn of learning
problems that are possible interpretations of I, among those a designated problem, Pi is the actual problem.

● An dynamic representation of Pi for an agent X at h ∈ HPi
, can be characterized with an awareness

function mapping h to some problem P ′—or some subset of P, under uncertainty—that captures the
agent’s representation of Pi a the last position of h—see [HR06, GJ12a, GJ12b].

● An agent’s representation can be partial, if she considers some Pj with Hpj
⊂ HPi

; ambiguous, if she
considers more than one Pj ; or incorrect, if Pi and here representation Pj are incomparable.

● In problem-solving experiments reasoning to the intended interpretation of I is a coordination problem
between subject and experimenter.

IMI Workshop, IHPST, Paris 19 / 40

The“Selection Task” as a Learning Problem 20 / 40

Interpretation in ST (I): “Reasoning to” and“Reasoning from”

Focusing on the standard, abstract version of ST, and empirical subjects:

● Reasoning to an interpretation is equivalent to:

✦ Use the instructions heuristically to select a family of LM L, that yield a representation;
✦ If the representation is ambiguous, find a criterion to choose the ‘best.’

● Reasoning from an interpretation is equivalent to:

✦ Use the instructions to order by preference LM that solve the problem (if any); in particular comply
with:

Don’t turn unnecessary cards (Nec)

✦ Report the selection of the ‘best’ LM.

IMI Workshop, IHPST, Paris 21 / 40
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Interpretation in ST (II): Assumptions

Problem 4 (from [SvL08, ch. 3]). (a) The ‘standard’ instructions yield no single representation of ST.
(b) Even if restricted to 4-card settings, (Nec) is ambiguous, and induces no unique ranking.

To make Prob. 4, manageable, we make the following (simplifying) assumptions:

Ass. 4.1 We consider a ‘generic’ problem 〈KST, HST, QST〉 where: (a) every κ ∈ KST is characterized by four
cards, with A,K,7 and 4 as only possible values; (b) h ∈ HST is generated by turning cards; and: (c)
QST ={Rule,¬Rule}, where Rule satisfies a material conditional.
Other representations considered are subsets of HST.

Ass. 4.2 We limit to LM that are patient—wait for ‘Nature’s answers’ before they asses QST—and
credulous—do not seek justification; i.e. treat the problem as of pure discovery [see HHM99]

IMI Workshop, IHPST, Paris 22 / 40

The ST Problem (I)

Under Ass. 4.1, we have:

Definition 5. The ST problem is a triple PST=〈KST, HST, QST〉, where:

● For all κ ∈ KST, κ={(A, x1), (K,x2), (4, x3), (7, x4)}, with x1, x2 ∈ {4, 7}, and x3, x4 ∈ {A,K};

● For all h ∈ HST, h(n) = {(A, x1), (K,x2), (4, x3), (7, x4)}, with x1, x2 ∈ {·, 4, 7} and x3, x4 ∈ {·, A,K};
and:

H0 h|1 = h0 = 〈{(A, ·), (K, ·), (4, ·), (7, ·)}〉no back value is initially known;
H1 if h(n) = {(A, x1), (K,x2), (4, x3), (7, x4)} and e = {(A, x′

1), (K,x′

2), (4, x
′

3), (7, x
′

4)} then:
h " e ∈ HST iff: (a) xi += x′

i, for some xi; and: (b) if xi += ·, then x′

i = xi. (a) at least one back is
revealed at each position after the first; and: (b) once revealed, no value may be forgotten or hidden
again.

● QST = {Rule,¬Rule}, where κ ∈ Rule iff x1 = 4 and x4 = K.
Equivalently (given K): κ ∈ ¬Rule iff x1 = 7 or x4 = A.

We let κ0 denote the underlying state in KST (or ‘state of Nature’) in any particular instance of PST.

IMI Workshop, IHPST, Paris 23 / 40
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The ST Problem (II)

Rem 5.1 For each instance of PST, κ0 is uniquely identified at each maximal history—the last position is
identical with some κi ∈ KST s.t. κi = κ0 (answers are truthful).

Rem 5.2 Identifying κ0 up to inclusion in Rule (or ¬Rule) suffices to assess QST (for truth-tracking methods
of Ass. 4.2).

Rem 5.3 (a) States which differ only w.r.t. unknown back values at h(n), are indiscernible from κ0 at h(n).
(b) Extensions of h0 ‘shrink’ indiscernibility.

Rem 5.4 Since AST = ∅, any LM for PST is a (partial) function l : HST $→ QST ×Q ∪ {?}, with (for any l
addressing PST). Without further restrictions:

QST = {turn[S] : S ⊆ {(A, ·), (K, ·), (4, ·), (7, ·)}} (QST)

.

IMI Workshop, IHPST, Paris 24 / 40

How to solve PST?

Observation 6. A complete (extensional) representation of KST is not necessary to solve PST if the rule is read
as a material conditional.

Idea of the proof. From Rem. 5.1–3, the ‘intensional tests’ of the conjunctive property “x1 = 4 and x4 = K”or the
disjunctive property “x1 = 7 or x4 = A”are each sufficient to assess membership of equivalence classes w.r.t. QST.

‘Intensional tests’ are cognitively more realistic [see SvL08, p. 178]. In terms of PST, one has:

Lemma 7. Selections of (A, ·) and (7, ·), in any sequence, or as a ‘one-shot’ selection, are: (a) sufficient to
solve any instance of PST; but: (b) not necessary to solve all instance of PST.

Idea of the proof. (a) is immediate from the definition of QST.
(b) selecting, (A, ·) and (7, ·) alone is sufficient when resp. (A, 7) ∈ κ0 and (7, A) ∈ κ0, to determine whether
κ0 ∈ ¬Rule; selecting both is only necessary when κ0 ∈ Rule. (a) the two-card selection always fulfills both tests; (b) a
shorter selection may sometimes suffice to fulfill the first test.

IMI Workshop, IHPST, Paris 25 / 40
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What is “unnecessarry”?

Instruction (Nec) is ambiguous, and can be given narrow scope or wide scope:

Narrow scope = ‘history-bounded.’
Heuristic use: obtain, from some history h, a history h∗ identical with h save for steps redundant in h to
identify κ0 up to inclusion in Rule or ¬Rule.

Wide scope = ‘cross-history.’
Heuristic use: obtain, from some history h, a history h∗ identical with h save for steps redundant in
some h′ (possibly distinct from h) to identify κ0 up to inclusion in Rule or ¬Rule.

IMI Workshop, IHPST, Paris 26 / 40

Solving the ST problem 27 / 40

The Wason LM (I)

Definition 8. The Wason LM is the function lW defined as follows:

lW (h ! e) =



















〈turn[(A, ·), (7, ·)], ?〉 if h = h0 and e = ∅

〈turn[∅],Rule〉 if h = h0 and e = {(A, 4), (K, ·), (4, ·), (7,K)},

〈turn[∅],¬Rule〉 if h = h0 and e $= {(A, 4), (K, ·), (4, ·), (7,K)},

undefined otherwise

(lW )

Rem 8.1 (lW ) decides both PST and the“stronger” (more constrained) ‘one-shot’ ST problem P 1
ST where

K1

ST = KST, Q1
ST=QST, but H1

ST is generated by one-time selections—i.e. where a LM can only pick a
single element of QST.

Rem 8.2 If a subject’s representation is limited to P 1
ST or lW (HST), and because indiscernibility at h0 is lifted

only after a selection, scopes of (Nec) collapse.

IMI Workshop, IHPST, Paris 28 / 40
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The Wason LM (II)

Rem. 8.1 can be strengthened as follows:

Observation 9. (lW ) is the only LM deciding P 1
ST under (Nec).

Idea of the proof. From Lem. 7, we know that turn[(A, ·), (7, ·)] is sufficient to identify κ0 up to inclusion in Rule or
¬Rule. The restriction to single selections prevents any ‘smaller’ selection to both track Nature’s answers and assess
QST1 on all states.

An immediate corollary is:

Corollary 10. (lW ) is the only LM deciding PST with a single selection without unnecessary cards.

IMI Workshop, IHPST, Paris 29 / 40

The Wason LM (III)

Rem 10.1 (lW ) is equivalent to a uniform strategy in an extensive game with imperfect information,
against Nature: whatever the underlying state—Nature’s strategy—is, Inquirer’s action is identical.

Rem 10.2 If subjects’ representation of PST is limited to P 1
ST, then by Obs. 9, turn[(A, ·), (7, ·)] is the

unique solution, and ‘ticking’ is trivial, aka (Nor) is the unique possible selection and report of a
solution (and decision).

Rem 10.3 Uniform strategies may be dominated depending on: (a) the cost of questions; (b) the
probabilities of states (and answers); (c) overall utility of exhaustive answers. . .
. . . but the costs and probabilities are unconstrained by the instructions, and there is no unique way to
set them.

IMI Workshop, IHPST, Paris 30 / 40
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Nonuniform solutions to PST (I)

Definition 11. Let l1 and l2 be defined as follows:

l1(h ! e) =







































〈turn[(A, ·)], ?〉 if h = h0 and e = ∅

〈turn[∅],¬Rule〉 if h = h0 and e = e1 = 〈(A, 7), (K, ·), (4, ·), (7, ·)〉,

〈turn[(7, ·)], ?〉 if h = h0 and e = e2 = 〈(A, 4), (K, ·), (4, ·), (7, ·)〉,

〈turn[∅],¬Rule〉 if h = h0 ! e2 and e = e2.1 = 〈(A, 4), (K, ·), (4, ·), (7, A)〉,

〈turn[∅],Rule〉 if h = h0 ! e2 and e = e2.2 = 〈(A, 4), (K, ·), (4, ·), (7,K)〉,

undefined otherwise

(l1)

l2(h ! e) =







































〈turn[(7, ·)], ?〉 if h = h0 and e = ∅

〈turn[∅],¬Rule〉 if h = h0 and e = e′
1
= 〈(A, ·), (K, ·), (4, ·), (7, A)〉,

〈turn[(A, ·)], ?〉 if h = h0 and e = e′
2
= 〈(A, ·), (K, ·), (4, ·), (7,K)〉,

〈turn[∅],¬Rule〉 if h = h0 ! e′
2
and e = e′

2.1
= 〈(A, 7), (K, ·), (4, ·), (7,K)〉,

〈turn[∅],Rule〉 if h = h0 ! e′
2
and e = e′

2.2
= 〈(A, 4), (K, ·), (4, ·), (7,K)〉,

undefined otherwise

(l2)

IMI Workshop, IHPST, Paris 31 / 40

Nonuniform solutions to PST (II)

If (Nec) is given narrow scope, the following holds:

Observation 12. (a) (lW ) is the only uniform LM deciding PST without unnecessary cards. (b) (l1) and (l2)
are the only nonuniform LM deciding PST without unnecessary cards.

Idea of the proof. (a) Immediate from Cor. 10 is equivalent, by Rem. 10.1.
(b) From Lem. 7, we know that turn[(A, ·), (7, ·)] is sufficient to identify κ0 up to inclusion in Rule or ¬Rule. Using
(Nec) (with narrow scope) heuristically, one cannot eliminate more redundant moves than those eliminated in (l1) and
(l2).
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Nonuniform solutions to PST (III)

Rem 12.1 If a subjects representation of PST is ‘rich enough’ to include either l1(HST) or l2(HST), some
reason to prefer uniform strategies is needed to favor (lW ), or some reason to exhaust potential
counterinstances (as in some ‘deontic’ cases).

Rem 12.2 If a subject selects (l1) or (l2), she will report (Nor) only if she has some reason to report the
‘longest’ history.

Rem 12.3 Depending on the cost of questions and probability of states, the cost of (l1) and (l2) may be
lower than the cost of (lW ).
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An unsolvability result

If (Nec) is given wide scope, then:

Observation 13. There is no LM deciding PST without unnecessary cards.

Idea of the proof. Immediate from Lem. 7.b, using (Nec) with wide scope heuristically.

IMI Workshop, IHPST, Paris 34 / 40

15



Conclusions 35 / 40

A Coordination Problem

Claim 1. (a) P 1
ST is the most likely candidate for an intended interpretation of ST; but: (b) the task is

rigged against coordination.

Support. For (a): Obs. 9, and its consequences—no ambiguity for (Nec), trivial report.
For (b): Prob. 4, and:

● the interpretation of ST as P 1
ST requires additional hypotheses from subjects, even under 4-card reading,

and preference patterns that are not constrained by instructions.
● Sequential tasks where subjects play runs rather than plan strategies, seem to be evidence that they

discover (l1) and (l2) while playing [see SvL08, p. 105-106, 111-112], . . .
. . . but this happens when the computational cost of planning ahead is offset, and the underlying game is
competitive (unbeknown to subject)—[SvL08] acknowledge the first, but fail to notice the second.
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Do Deontic Aspects Matter?

Claim 2. The ‘deontic’ aspect of the rule in thematic tasks is second to the incentive to implement exhaustive
tests or uniform strategies, in elicitation of (Nor)-like selections.

Support. Preferences (and utilities) are important, but:

● ‘Deontic rules’ facilitate exhaustive tests and uniform strategies when a high utility is assigned to find
possible violators/exceptions [see OC94];

● Yet similar preferences can be induced in non-deontic rules, by relevance effects [see GKSvdH01].
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One last claim (I)

Our last claim is better expressed after arguments that support it.

● Cognitive needs of strategic planning in cooperative settings have lead to the evolution of complex
semantic representations needed for successful reasoning to solutions [BG03].

● Semantic heuristics influence algorithmic strategies that can generate a partial representation of an
underlying game sufficient to solve it without fully extensional treatment (complete strategies)
[HR06, GJ12a, GJ12b].

● Games where ‘knowledge manipulators’ affect outcome by manipulating player’s representation of the
game are a good model of (inter alia) psychological experiments [PTW11, GJ12a].

● Such manipulations subsume Bayesian rational analysis and Relevance theory, but in agreement with the
evidence of ‘default’ semantic reasoning revealed by tutorial dialogs [SvL01, SvL08], while offering a
unifying formal model.
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One last claim (II)

Claim 3. Algorithmic game theory is the natural formal model to study problem-solving, and a useful tool
interpret and design experiments.

Support. All the arguments advanced in this talk. . .

. . . and (hopefully) future empirical tests!

THANK YOU!
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